Capturing and genotyping the genome-wide genetic diversity of trees for association mapping and genomic selection
نویسندگان
چکیده
Background Growing demand for food and fiber, and a rapidly changing climate will require that plant breeders accelerate the improvement of germplasm adapted to new sources of biotic and abiotic stress. In trees, the threat from climate change is more evident and the solutions more challenging than in any other plant species, due to the complexity and cost of breeding programs, and the long breeding cycles. Therefore, the discovery of genetic polymorphism that can be exploited for early selection of better adapted and productive individuals is essential. Quantitative trait loci (QTL) analysis provided an initial glimpse at the architecture of complex traits, but limited transferability across populations and resolution hampered the adoption of markers in tree breeding programs. Recently, association studies have become the method of choice for detection of markers implicated in trait variation, because of higher resolution, population transferability and allelic diversity captured relative to the QTL approach. However, in tree species, association studies have been largely constrained to sampling the genetic diversity in a limited fraction of the genome, and in small populations. Evidence from genome-wide association studies (GWAS) in humans and advanced crops clearly show that larger populations, and the sampling of regulatory variants and rare alleles is critical to dissect the genetic control of complex traits for markerassisted breeding (MAB). As the limitations of QTL and GWAS approaches become evident, “hybrid” intermediate strategies that combine the advantages of both methods have emerged. Notably, genomic selection has become an alternative to MAB. Genomic selection (GS), which relies on developing genome-wide marker-based models that predict the genetic value of progeny, will be particularly valuable for early selection in tree breeding programs. However, the implications of GS may also be highly valuable to identify mating designs that generate progeny with optimal allelic combinations for superior growth and wood properties, and adaptive capabilities.
منابع مشابه
The Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملEfficient Algorithms in Analyzing Genomic Data
Feng Pan: Efficient Algorithms in Analyzing Genomic Data. (Under the direction of Wei Wang.) With the development of high-throughput and low-cost genotyping technologies, immense data can be cheaply and efficiently produced for various genetic studies. A typical dataset may contain hundreds of samples with millions of genotypes/haplotypes. In order to prevent data analysis from becoming a bottl...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کامل